Visual-SLAM 키워드 리스트
Camera Model + Projective Geometry
- Digital Image의 특성
- 해상도, 컬러 채널, 대비
- Point, Line, Edge, Blob
- 카메라 / 렌즈 하드웨어
- Sensor Resolution, Aperture, ISO, Exposure, Shutter Speed
- Noise model, convolution, filtering, Fourier analysis
- 영상처리
- rgb2gray, image resize, template matching
- Pinhole 카메라 모델, 왜곡, 캘리브레이션
- Pinhole 카메라 모델의 영상 투영
- Radial / Tangential 왜곡 모델
- Zhang 카메라 캘리브레이션
- Projective Geometry
- Vanishing point
- Euclidean / Homogeneous coordinates
- Euler Angle, Axis-angle, Quaternion, SO(3), SE(3)
- Coordinate transformation
Feature Detection / Descriptor / Matching
- Feature Detector
- Properties of corner, Scale space
- Harris / Shi-Tomasi
- SIFT / SURF
- FAST / oFAST (ORB)
- Feature Descriptor
- SIFT
- BRIEF / rBRIEF (ORB)
- Deep local feature
- SuperPoint
- D2Net
- Feature Matching
- Brute-Force matching
- FLANN - Nearest Neighbour
- LSH / Multi-probe LSH
- HBST
- Optical flow, KLT Tracker
- Horn & Schunck L2 / LK / L1 Reg Optical flow
- KLT Tracker
- Global feature
- Bag-of-visual-words
- VLAD
- NetVLAD
Multiview geometry
- Epipolar geometry (2D-2D)
- Essential / Fundamental Matrix (5/8-point)
- Singular Value Decomposition (SVD)
- Homography matrix (4-point)
- Multiple view (2D-3D)
- Perspective-n-Points Problem (PnP)
- Triangulation / Disparity
- Transformation between point clouds (3D-3D)
- Iterative Closet Points Problem (ICP)
- Outlier Rejection
- RANSAC
- Robust Estimator / Maximum consensus problem
- Convex relaxation
- Bundle adjustment / Structure from Motion
- Numerical Methods and optimisation
- Least squares problem
- Gauss-Newton, Levenberg-Marquardt algorithm
- Non-linear solver libraries / factor graphs
- Motion-only bundle adjustment / Full BA
Simultaneous Localization and Mapping
- Introduction to SLAM
- Definition of SLAM
- Difference between SLAM, SfM, Odometry, Path planning, Image stitching
- Indirect (feature-based) vs Direct-based SLAM
- Loop closure / Bag of Visual Words
- Descriptor database formulation / query
- kd-tree
- Mapping
- Stereo matching
- OctoMap
- TSDF
- Voxel Hashing
- Sensor fusion / Tracking
- KF, EKF, UKF
- Factor graph optimisation
- VINS estimator
- Rolling Shutter compensation
Machine Learning
- Recognition
- HOG, SIFT, GIST
- Viola-Jones, Cascades
- AdaBoost, kNN, SVM, Random Forest
- Principle component analysis
- PCA, ICA, CCA
- Estimation
- EM Algorithm → ML, MAP
- Clustering
- K-means, Mean-shift, Pedro-clustering
Artificial Neural Network
- Neural Network
- Backpropagation, Multi-layer perceptron, SoftMax
- Optimization, Stochastic Gradient Descent SGD), ADAM
- Batch Norm, Dropout, Momentum
- Ensemble, Transfer Learning, Data augmentation
- Convolutional Neural Network
- Convolution, Pooling
- AlexNet, VGG, GoogLeNet, ResNet, ResNeXT, EfficientNet
- Sparse Convolutional Neural Network
- Recurrent Neural Network
- RNN, LSTM, GRU, Attention, Transformer
- Soft Attention
- Detection
- YOLO, MobileNet-SSD, RCNN,
- Segmentation
- U-Net
- Pose Estimation