Solidity 공부하기 좋은 예제

출처

https://github.com/adambard/learnxinyminutes-docs/blob/master/solidity.html.markdown

 


Solidity 코딩 예제

은행 업무를 미믹킹 하는 코드

그 이후에는 Solidity 기본기를 설명함

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

// First, a simple Bank contract
// Allows deposits, withdrawals, and balance checks

// simple_bank.sol (note .sol extension)
/* **** START EXAMPLE **** */

// Declare the source file compiler version
pragma solidity ^0.6.6;

// Start with Natspec comment (the three slashes)
// used for documentation - and as descriptive data for UI elements/actions

/// @title SimpleBank
/// @author nemild

/* 'contract' has similarities to 'class' in other languages (class variables,
inheritance, etc.) */
contract SimpleBank { // CapWords
// Declare state variables outside function, persist through life of contract

// dictionary that maps addresses to balances
// always be careful about overflow attacks with numbers
mapping (address => uint) private balances;

// "private" means that other contracts can't directly query balances
// but data is still viewable to other parties on blockchain

address public owner;
// 'public' makes externally readable (not writeable) by users or contracts

// Events - publicize actions to external listeners
event LogDepositMade(address accountAddress, uint amount);

// Constructor, can receive one or many variables here; only one allowed
constructor() public {
// msg provides details about the message that's sent to the contract
// msg.sender is contract caller (address of contract creator)
owner = msg.sender;
}

/// @notice Deposit ether into bank
/// @return The balance of the user after the deposit is made
function deposit() public payable returns (uint) {
// Use 'require' to test user inputs, 'assert' for internal invariants
// Here we are making sure that there isn't an overflow issue
require((balances[msg.sender] + msg.value) >= balances[msg.sender]);

balances[msg.sender] += msg.value;
// no "this." or "self." required with state variable
// all values set to data type's initial value by default

emit LogDepositMade(msg.sender, msg.value); // fire event

return balances[msg.sender];
}

/// @notice Withdraw ether from bank
/// @dev This does not return any excess ether sent to it
/// @param withdrawAmount amount you want to withdraw
/// @return remainingBal
function withdraw(uint withdrawAmount) public returns (uint remainingBal) {
require(withdrawAmount <= balances[msg.sender]);

// Note the way we deduct the balance right away, before sending
// Every .transfer/.send from this contract can call an external function
// This may allow the caller to request an amount greater
// than their balance using a recursive call
// Aim to commit state before calling external functions, including .transfer/.send
balances[msg.sender] -= withdrawAmount;

// this automatically throws on a failure, which means the updated balance is reverted
msg.sender.transfer(withdrawAmount);

return balances[msg.sender];
}

/// @notice Get balance
/// @return The balance of the user
// 'view' (ex: constant) prevents function from editing state variables;
// allows function to run locally/off blockchain
function balance() view public returns (uint) {
return balances[msg.sender];
}
}
// ** END EXAMPLE **


// Now, the basics of Solidity

// 1. DATA TYPES AND ASSOCIATED METHODS
// uint used for currency amount (there are no doubles
// or floats) and for dates (in unix time)
uint x;

// int of 256 bits, cannot be changed after instantiation
int constant a = 8;
int256 constant a = 8; // same effect as line above, here the 256 is explicit
uint constant VERSION_ID = 0x123A1; // A hex constant
// with 'constant', compiler replaces each occurrence with actual value

// All state variables (those outside a function)
// are by default 'internal' and accessible inside contract
// and in all contracts that inherit ONLY
// Need to explicitly set to 'public' to allow external contracts to access
int256 public a = 8;

// For int and uint, can explicitly set space in steps of 8 up to 256
// e.g., int8, int16, int24
uint8 b;
int64 c;
uint248 e;

// Be careful that you don't overflow, and protect against attacks that do
// For example, for an addition, you'd do:
uint256 c = a + b;
assert(c >= a); // assert tests for internal invariants; require is used for user inputs
// For more examples of common arithmetic issues, see Zeppelin's SafeMath library
// https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/math/SafeMath.sol


// No random functions built in, you can get a pseduo-random number by hashing the current blockhash, or get a truely random number using something like Chainlink VRF.
// https://docs.chain.link/docs/get-a-random-number

// Type casting
int x = int(b);

bool b = true; // or do 'var b = true;' for inferred typing

// Addresses - holds 20 byte/160 bit Ethereum addresses
// No arithmetic allowed
address public owner;

// Types of accounts:
// Contract account: address set on create (func of creator address, num transactions sent)
// External Account: (person/external entity): address created from public key

// Add 'public' field to indicate publicly/externally accessible
// a getter is automatically created, but NOT a setter

// All addresses can be sent ether
owner.transfer(SOME_BALANCE); // fails and reverts on failure

// Can also do a lower level .send call, which returns a false if it failed
if (owner.send) {} // REMEMBER: wrap send in 'if', as contract addresses have
// functions executed on send and these can fail
// Also, make sure to deduct balances BEFORE attempting a send, as there is a risk of a recursive
// call that can drain the contract

// Can check balance
owner.balance; // the balance of the owner (user or contract)


// Bytes available from 1 to 32
byte a; // byte is same as bytes1
bytes2 b;
bytes32 c;

// Dynamically sized bytes
bytes m; // A special array, same as byte[] array (but packed tightly)
// More expensive than byte1-byte32, so use those when possible

// same as bytes, but does not allow length or index access (for now)
string n = "hello"; // stored in UTF8, note double quotes, not single
// string utility functions to be added in future
// prefer bytes32/bytes, as UTF8 uses more storage

// Type inference
// var does inferred typing based on first assignment,
// can't be used in functions parameters
var a = true;
// use carefully, inference may provide wrong type
// e.g., an int8, when a counter needs to be int16

// var can be used to assign function to variable
function a(uint x) returns (uint) {
return x * 2;
}
var f = a;
f(22); // call

// by default, all values are set to 0 on instantiation

// Delete can be called on most types
// (does NOT destroy value, but sets value to 0, the initial value)
uint x = 5;


// Destructuring/Tuples
(x, y) = (2, 7); // assign/swap multiple values


// 2. DATA STRUCTURES
// Arrays
bytes32[5] nicknames; // static array
bytes32[] names; // dynamic array
uint newLength = names.push("John"); // adding returns new length of the array
// Length
names.length; // get length
names.length = 1; // lengths can be set (for dynamic arrays in storage only)

// multidimensional array
uint[][5] x; // arr with 5 dynamic array elements (opp order of most languages)

// Dictionaries (any type to any other type)
mapping (string => uint) public balances;
balances["charles"] = 1;
// balances["ada"] result is 0, all non-set key values return zeroes
// 'public' allows following from another contract
contractName.balances("charles"); // returns 1
// 'public' created a getter (but not setter) like the following:
function balances(string _account) returns (uint balance) {
return balances[_account];
}

// Nested mappings
mapping (address => mapping (address => uint)) public custodians;

// To delete
delete balances["John"];
delete balances; // sets all elements to 0

// Unlike other languages, CANNOT iterate through all elements in
// mapping, without knowing source keys - can build data structure
// on top to do this

// Structs
struct Bank {
address owner;
uint balance;
}
Bank b = Bank({
owner: msg.sender,
balance: 5
});
// or
Bank c = Bank(msg.sender, 5);

c.balance = 5; // set to new value
delete b;
// sets to initial value, set all variables in struct to 0, except mappings

// Enums
enum State { Created, Locked, Inactive }; // often used for state machine
State public state; // Declare variable from enum
state = State.Created;
// enums can be explicitly converted to ints
uint createdState = uint(State.Created); // 0

// Data locations: Memory vs. storage vs. calldata - all complex types (arrays,
// structs) have a data location
// 'memory' does not persist, 'storage' does
// Default is 'storage' for local and state variables; 'memory' for func params
// stack holds small local variables

// for most types, can explicitly set which data location to use


// 3. Simple operators
// Comparisons, bit operators and arithmetic operators are provided
// exponentiation: **
// exclusive or: ^
// bitwise negation: ~


// 4. Global Variables of note
// ** this **
this; // address of contract
// often used at end of contract life to transfer remaining balance to party
this.balance;
this.someFunction(); // calls func externally via call, not via internal jump

// ** msg - Current message received by the contract ** **
msg.sender; // address of sender
msg.value; // amount of ether provided to this contract in wei, the function should be marked "payable"
msg.data; // bytes, complete call data
msg.gas; // remaining gas

// ** tx - This transaction **
tx.origin; // address of sender of the transaction
tx.gasprice; // gas price of the transaction

// ** block - Information about current block **
now; // current time (approximately), alias for block.timestamp (uses Unix time)
// Note that this can be manipulated by miners, so use carefully

block.number; // current block number
block.difficulty; // current block difficulty
block.blockhash(1); // returns bytes32, only works for most recent 256 blocks
block.gasLimit();

// ** storage - Persistent storage hash **
storage['abc'] = 'def'; // maps 256 bit words to 256 bit words


// 4. FUNCTIONS AND MORE
// A. Functions
// Simple function
function increment(uint x) returns (uint) {
x += 1;
return x;
}

// Functions can return many arguments, and by specifying returned arguments
// name don't need to explicitly return
function increment(uint x, uint y) returns (uint x, uint y) {
x += 1;
y += 1;
}
// Call previous functon
uint (a,b) = increment(1,1);

// 'view' (alias for 'constant')
// indicates that function does not/cannot change persistent vars
// View function execute locally, not on blockchain
// Noted: constant keyword will soon be deprecated.
uint y = 1;

function increment(uint x) view returns (uint x) {
x += 1;
y += 1; // this line would fail
// y is a state variable, and can't be changed in a view function
}

// 'pure' is more strict than 'view' or 'constant', and does not
// even allow reading of state vars
// The exact rules are more complicated, so see more about
// view/pure:
// http://solidity.readthedocs.io/en/develop/contracts.html#view-functions

// 'Function Visibility specifiers'
// These can be placed where 'view' is, including:
// public - visible externally and internally (default for function)
// external - only visible externally (including a call made with this.)
// private - only visible in the current contract
// internal - only visible in current contract, and those deriving from it

// Generally, a good idea to mark each function explicitly

// Functions hoisted - and can assign a function to a variable
function a() {
var z = b;
b();
}

function b() {

}

// All functions that receive ether must be marked 'payable'
function depositEther() public payable {
balances[msg.sender] += msg.value;
}


// Prefer loops to recursion (max call stack depth is 1024)
// Also, don't setup loops that you haven't bounded,
// as this can hit the gas limit

// B. Events
// Events are notify external parties; easy to search and
// access events from outside blockchain (with lightweight clients)
// typically declare after contract parameters

// Typically, capitalized - and add Log in front to be explicit and prevent confusion
// with a function call

// Declare
event LogSent(address indexed from, address indexed to, uint amount); // note capital first letter

// Call
LogSent(from, to, amount);

/**

For an external party (a contract or external entity), to watch using
the Web3 Javascript library:

// The following is Javascript code, not Solidity code
Coin.LogSent().watch({}, '', function(error, result) {
if (!error) {
console.log("Coin transfer: " + result.args.amount +
" coins were sent from " + result.args.from +
" to " + result.args.to + ".");
console.log("Balances now:\n" +
"Sender: " + Coin.balances.call(result.args.from) +
"Receiver: " + Coin.balances.call(result.args.to));
}
}
**/

// Common paradigm for one contract to depend on another (e.g., a
// contract that depends on current exchange rate provided by another)

// C. Modifiers
// Modifiers validate inputs to functions such as minimal balance or user auth;
// similar to guard clause in other languages

// '_' (underscore) often included as last line in body, and indicates
// function being called should be placed there
modifier onlyAfter(uint _time) { require (now >= _time); _; }
modifier onlyOwner { require(msg.sender == owner) _; }
// commonly used with state machines
modifier onlyIfStateA (State currState) { require(currState == State.A) _; }

// Append right after function declaration
function changeOwner(newOwner)
onlyAfter(someTime)
onlyOwner()
onlyIfState(State.A)
{
owner = newOwner;
}

// underscore can be included before end of body,
// but explicitly returning will skip, so use carefully
modifier checkValue(uint amount) {
_;
if (msg.value > amount) {
uint amountToRefund = amount - msg.value;
msg.sender.transfer(amountToRefund);
}
}


// 6. BRANCHING AND LOOPS

// All basic logic blocks work - including if/else, for, while, break, continue
// return - but no switch

// Syntax same as javascript, but no type conversion from non-boolean
// to boolean (comparison operators must be used to get the boolean val)

// For loops that are determined by user behavior, be careful - as contracts have a maximal
// amount of gas for a block of code - and will fail if that is exceeded
// For example:
for(uint x = 0; x < refundAddressList.length; x++) {
refundAddressList[x].transfer(SOME_AMOUNT);
}

// Two errors above:
// 1. A failure on transfer stops the loop from completing, tying up money
// 2. This loop could be arbitrarily long (based on the amount of users who need refunds), and
// therefore may always fail as it exceeds the max gas for a block
// Instead, you should let people withdraw individually from their subaccount, and mark withdrawn
// e.g., favor pull payments over push payments


// 7. OBJECTS/CONTRACTS

// A. Calling external contract
contract InfoFeed {
function info() payable returns (uint ret) { return 42; }
}

contract Consumer {
InfoFeed feed; // points to contract on blockchain

// Set feed to existing contract instance
function setFeed(address addr) {
// automatically cast, be careful; constructor is not called
feed = InfoFeed(addr);
}

// Set feed to new instance of contract
function createNewFeed() {
feed = new InfoFeed(); // new instance created; constructor called
}

function callFeed() {
// final parentheses call contract, can optionally add
// custom ether value or gas
feed.info.value(10).gas(800)();
}
}

// B. Inheritance

// Order matters, last inherited contract (i.e., 'def') can override parts of
// previously inherited contracts
contract MyContract is abc, def("a custom argument to def") {

// Override function
function z() {
if (msg.sender == owner) {
def.z(); // call overridden function from def
super.z(); // call immediate parent overridden function
}
}
}

// abstract function
function someAbstractFunction(uint x);
// cannot be compiled, so used in base/abstract contracts
// that are then implemented

// C. Import

import "filename";
import "github.com/ethereum/dapp-bin/library/iterable_mapping.sol";


// 8. OTHER KEYWORDS

// A. Selfdestruct
// selfdestruct current contract, sending funds to address (often creator)
selfdestruct(SOME_ADDRESS);

// removes storage/code from current/future blocks
// helps thin clients, but previous data persists in blockchain

// Common pattern, lets owner end the contract and receive remaining funds
function remove() {
if(msg.sender == creator) { // Only let the contract creator do this
selfdestruct(creator); // Makes contract inactive, returns funds
}
}

// May want to deactivate contract manually, rather than selfdestruct
// (ether sent to selfdestructed contract is lost)


// 9. CONTRACT DESIGN NOTES

// A. Obfuscation
// All variables are publicly viewable on blockchain, so anything
// that is private needs to be obfuscated (e.g., hashed w/secret)

// Steps: 1. Commit to something, 2. Reveal commitment
keccak256("some_bid_amount", "some secret"); // commit

// call contract's reveal function in the future
// showing bid plus secret that hashes to SHA3
reveal(100, "mySecret");

// B. Storage optimization
// Writing to blockchain can be expensive, as data stored forever; encourages
// smart ways to use memory (eventually, compilation will be better, but for now
// benefits to planning data structures - and storing min amount in blockchain)

// Cost can often be high for items like multidimensional arrays
// (cost is for storing data - not declaring unfilled variables)

// C. Data access in blockchain
// Cannot restrict human or computer from reading contents of
// transaction or transaction's state

// While 'private' prevents other *contracts* from reading data
// directly - any other party can still read data in blockchain

// All data to start of time is stored in blockchain, so
// anyone can observe all previous data and changes

// E. Oracles and External Data
// Oracles are ways to interact with your smart contracts outside the blockchain.
// They are used to get data from the real world, send post requests, to the real world
// or vise versa.

// Time-based implementations of contracts are also done through oracles, as
// contracts need to be directly called and can not "subscribe" to a time.
// Due to smart contracts being decentralized, you also want to get your data
// in a decentralized manner, other your run into the centralized risk that
// smart contract design matter prevents.

// To easiest way get and use pre-boxed decentralized data is with Chainlink Data Feeds
// https://docs.chain.link/docs/get-the-latest-price
// We can reference on-chain reference points that have already been aggregated by
// multiple sources and delivered on-chain, and we can use it as a "data bank"
// of sources.

// You can see other examples making API calls here:
// https://docs.chain.link/docs/make-a-http-get-request

// And you can of course build your own oracle network, just be sure to know
// how centralized vs decentralized your application is.

// Setting up oracle networks yourself

// D. Cron Job
// Contracts must be manually called to handle time-based scheduling; can create external
// code to regularly ping, or provide incentives (ether) for others to
//

// E. Observer Pattern
// An Observer Pattern lets you register as a subscriber and
// register a function which is called by the oracle (note, the oracle pays
// for this action to be run)
// Some similarities to subscription in Pub/sub

// This is an abstract contract, both client and server classes import
// the client should implement
contract SomeOracleCallback {
function oracleCallback(int _value, uint _time, bytes32 info) external;
}

contract SomeOracle {
SomeOracleCallback[] callbacks; // array of all subscribers

// Register subscriber
function addSubscriber(SomeOracleCallback a) {
callbacks.push(a);
}

function notify(value, time, info) private {
for(uint i = 0;i < callbacks.length; i++) {
// all called subscribers must implement the oracleCallback
callbacks[i].oracleCallback(value, time, info);
}
}

function doSomething() public {
// Code to do something

// Notify all subscribers
notify(_value, _time, _info);
}
}

// Now, your client contract can addSubscriber by importing SomeOracleCallback
// and registering with Some Oracle

// F. State machines
// see example below for State enum and inState modifier